Brewery wastewater treatment plant key-component estimation using moving-window recurrent neural networks
نویسندگان
چکیده
منابع مشابه
Industrial Wastewater Treatment Plant Forecasting Using Neural Networks
The efficiency of the Wastewater Treatment Plant (WWTP) strongly depends on the inlet flow and the component concentrations of the wastewater. The forecasting of WWTP load gives promising opportunities to accomplish relevant operational actions. A predictive control strategy has been implemented. Taking advantage of the recognized properties of universal approximation of neural networks (NN), a...
متن کاملPerformance Evaluation of Brewery Biological Wastewater Treatment Plant
Brewing is the process is for production of beer [1,2]. It is said that for every 1 liter of beer production approximate 10 liters of water is used [3]. The water in any brewery is typically used for brewing, rising and cooling process [3]. The various steps that are involved in brewing process are malt production and handling, worth preparation, fermentation, filtration, CIP and finally packag...
متن کاملEstimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater
Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were...
متن کاملSegment boundary estimation using recurrent neural networks
This paper describes a segment (e.g. phoneme) boundary estimation method based on recurrent neural networks (RNNs). The proposed method only requires acoustic observations to accurately estimate segment boundaries. Experimental results show that the proposed method can estimate segment boundaries signi cantly better than an HMM based method. Furthermore, we incorporate the RNN based segment bou...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.1173